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AbstmcL The effects of time-dependent unitary transformations on the geometrical 
phase are investigated in  the general non-adiabatic setting. A detailed study considering 
both paths of an interference experiment shows that even though the geometly of the 
fibre bundle: Hilben space - space of states changes The measured relative phase, 
geometrical phase and dynamical phase are all invariant under these uansformations. 

i. introduction 

The effects of time-dependent unitary transformations on the geometric (Berry) phase 
have been discussed by several authors in different contexts. In the adiabatic treat- 
ments [l-31 the Berry phase was said to become ‘dynamical’ under these transfor- 
mations. By becoming ‘dynamical’ it loses geometrical meaning and could in this 
way be ‘removed’ [1,2]. It was then shown that even though the Berry phase could 
become ‘dynamical’, it retained its geometrical meaning and was therefore not ‘re- 
moved’ [3]. In non-adiabatic treatments of specific physical systems [4,5] the Berry 
phase has been recently generalized so that it was invariant under time-dependent 
unitary transformations. A distinction between the Hamiltonian and energy operator 
was made in order to define the dynamical phase in an invariant way. A general 
non-adiabatic treatment was briefly discussed for periodic transformations in terms of 
relative frames [6]. 

We will consider arbitrary time-dependent unitary transformations and work in 
the general non-adiabatic setting. We will begin by reviewing a simple interference 
experiment in order to clearly define the measured relative phase. This phase is 
expressed in terms of the usual dynamical and geometrical parts. The etiects of 
time-dependent unitary transformations will then he  investigated in detail. These 
transformations alter the time evolution equations for both paths in an interference 
experiment leaving the measured relative phase invariant. By carefully considering the 
time evolution of both paths, we will show that the geometrical and dynamical phases 
are also invariant, and that the geometrical phase remains entirely geometrical. We 
will see explicitly what part of the phase should he called dynamical, and relate these 
ideas to the above-mentioned energy operator. 

2. The interference experiment 

The measurement of a relative phase is accomplished by performing an interference 
experiment, This experiment measures the relative phase between two state vectors 
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which have undergone different time evolutions, but represent the same initial and 
final physical state. A standard example is the following [7]. Consider a beam of 
neutral particles whose magnetic moment and spin axis coincide. Split the beam into 
two paths, one path going through an apparatus which contains a magnetic field and 
the other path going around the apparatus in free space. The magnetic field may or 
may not be time varying (81, and is chosen so that when the beam exits the apparatus it 
is in the same quantum state as when it entered. Recombine the beam and observe 
the interference pattern. If the transit times of the two paths are set equal, the 
dynamical phase produced by the free space Hamiltonian for each path will be equal. 
This common phase will then cancel when the beams are recombined. The remaining 
relative phase between the two paths represents the effect of the apparatus which is 
not common to both paths. Although this particular example is not practical, it is a 
simple theoretical model which can be used to describe interference experiments. 

In order to derive the measured relative phase, we must consider the time evolu- 
tion equations for both paths. We will denote path 1 as the path which goes through 
the apparatus and path 2 as the path which goes around the apparatus. We will 
assume that the transit times have been set equal so that we can ignore the free 
space Hamiltonian. The time evolution equations for both paths are 

where II/J1(l)) is the state vector representing the state of path 1, I&(t)) is the state 
vector representing the state of path 2 and h ( t )  is the Hamiltonian representing 
the apparatus. We will consider a time-dependent system for which the Hamiltonian 
h ( l )  is equal to the energy of the system. However, for a time-dependent system the 
energy is in general different from the Hamiltonian [4,5]. The Hamiltonian h ( l )  is 
chosen so as to produce cyclic evolution for path 1. By cyclic evolution we mean that 
the curve in the space of physical states (projective Hilbert space) is closed. We will 
denote the physical states of path 1 and 2 by the projection operators 

r1(0 l+l(t))WI(t)l (3a)  

r z ( t )  = I&(WdJ?(U~ (36) 

r , ( T )  = r,(O). (4) 

We can express the condition for cyclic evolution over a time period T as 

At time 1 = 0 (when the beam is split) the states of the two paths are set equal 

r l ( 0 )  = 7 r 2 ( 0 ) .  ( 5 )  

From equation ( 2 )  we see that the time evolution of the state vector / I /Jz(t ) )  is given 
by 

I+)?(t)) = I+?(O)) v i  (6)  

n z ( t )  = x 2 ( 0 )  vt.  (7) 

which implies that the state of path 2 is stationary 
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From equations (4), (5) and (7) we see that the final states of path 1 and 2 are equal 

Tl(T) = Tz(T). (8) 
The measured relative phase between the two state vectors (which represent the same 
physical state at time T) is given by 

I+l(T)) = eiWI+z(TN. (9) 

I+l(T)) = e'Y'I$l(0)) (10) 

IILz(T)) = e'"'l&(o)). (11) 

I+L,(O)) = l+,(O)) (12) 

Let us define the phase change of path 1 and path 2 by 

We can choose without loss of generality 

and by substituting equation (12) into equation (11) and using this result in equation 
(10) we find 

/ + 1 ( ~ ) )  = ei(*1-Y2J l+z(T)). (13) 

By comparing equation (13) to equation (9) we see 
eie = e i ( ~ l - a d  

or 

a = ai - a2 (mod 2 T). (14) 
From equation (6) we see that a,  = 0 and from equation (14) this implies that 
a = ai. In the usual way we can express the total relative phase a in terms of a 
geometrical and dynamical part [8]. The connection defines this splitting [9,10] 

where the vectors I+( t ) )  are related to the vectors I G l ( t ) )  by a phase such that 
I+(T)) = I+(O)). The geometric phase is 

T 

p = i 1 @ ( t ) l & ( t ) )  d t .  (16) 
0 

By introducing coordinates z of projective Hilbert space, the geometric phase 0 can 
be written in terms of the connection form .4 detined by 

.S = iL@(z:)[dl4(xj) (17) 
where d is the exterior derivative with respect to the coordinates z. Equation (16) 
becomes 

4 . 4  c (18) 

where c is the closed curve in projective Hilbert space. The dynamical phase is 
T 

(19) 
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3. Time dependent unitary transformations 

We want to consider time-dependent unitary transformations acting on Hilbert space.. 
All the vectors transform according to 

I&t)) = U(t)l?L(t)) (20) 

U ( 1 )  ' U + [ f )  = 1 

where 
vt 

It is important to note that the unitary transformation given by U ( 1 )  = e''(*) (where 
f(1) is a real function) is not a gauge transformation. By definition a gauge trans- 
formation corresponds to a change in the local section which occurs upon choosing a 
new coordinate patch in projective Hilbert space 191. A local section is a continuous 
mapping of a patch in projective Hilbert space into Hilbert space. itself. A closed 
curve in projective Hilbert space is mapped by a local section into a closed curve in 
Hilbert space. We will denote the closed curve in Hilbert space by 14(t)). We can 
express a state vector in terms of 1+(2)) by 

By comparing equations (20), (21) and (24) we see that a unitary transformation 
changes the vector 1$(1) )  whereas a gauge transformation changes I$(t)). 

Writing equation (20) in terms of [ $ i t ) )  

I.$(t)) = U'(t)I&(O) 

and substituting this expression into the Schrodinger equation for I?L(t)) 

iI&(t)) = h ( t ) ~ z ~ ( t ) )  
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we find the effective SchrWinger equation for 14(t)) 

The transformation U ( t )  is acting on all the vectors in Hilbert space. It therefore 
effects the time evolution equations of both path 1 and path 2 of our interference 
experiment. Equations (1) and (2) become 

Under the transformation U ( t )  the curves in projective Hilbert space represented 
@; the pre;,ectien 1 1 )  nnrl xl(2) Change acGr*ing l \ * /  "a." " 

Before proceeding we will show that the measured relative phase Q is invariant 
under the transformation U ( t ) .  The transformed vectors at time T can be expressed 
as 

(30aj 

(3Ob) 

where we have used equations (10) and (11). Using equation (12) in equation (30b) 
and substituting this result into equation (30a) we find 

Comparing this result with equation (9) we see that the measured relative phase in 
an interference experiment is invariant under general time-dependent unitary trans- 
formations. 

For future reference we note that at t = 0 
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and upon substituting equation (12) into equation (32b) and using this result in 
equation (32a) we find 

I-il(0)) = t-i?(O)). 

We will begin our analysis with the simple case 

(33) 

~ ( t )  = cif('). (34) 

From equations (29a) and (296) we see that for U ( t )  given by equation (34) the 
paths r l ( t )  and r,(t) are unchanged. The time evolution equations (1) and (2) 
become according to equations (27) and (28) 

Let us define the phase SU, for the transformed path 1 by 
.. 

I4,(T)) = e'aI141(o)). (36) 

Since the curve in projective Hilbert space is unchanged, we can express l&(t))  in 
terms of I&(t)) (see equations (21) and (22)) 

Substituting equation (37a) into equation (35a),  contracting on the left with Lq,/, 
integrating and using equation (376) we find 

T T T 
= i i  Wt)l&t))dt  - 1 l i l ( t ) l f ~ ( t ) l ~ l ( t ) ) d t  + 1 f(t)dt .  (38) 

0 

At this point we must remember that the measured phase is Q not d,. We must do 
a similar analysis for path 2 where we define the phase a, by 

I~,(T)) = ei"aIdz(o)) .  

Equation (356) is easily integrated to find 

(39) 

Using equation (33) in equation (39) and then substituting this result into equation 
(36) we find (using also equation (31)) 

T T 

Q = a, -6, = ii lm(t)l&(t))df -1 L+l(t)th(t)l+l(t))dt (41) 
0 
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which we see is the original expression equation (15). By carefully considering the 
time evolution of both paths in our interference experiment, we have seen explicitly 
that the total measured phase, geometrical phase and dynamical phase are all invariant 
under the transformation given by equation (34). This is easily understood from the 
fact that the curve in projective Hilbert space has not changed. 

Now let us consider general time-dependent unitary transformations which can 
change the curve in projective Hilbert space. We have already shown that the mea- 
sured reiative phase is invariant (see equation (3ijj. we  need io investigate iiuw 
the splitting of the measured phase into geometrical and dynamical parts is affected. 
From equation (29a) we see that the curve in projective Hilbert space generated by 
path 1 evolution in our interference experiment is no longer closed. From equation 
(296) we see that the stationary state (see equation (7)) corresponding to path 2 is 
no longer stationary. Under the transformation U ( t )  the time evolution of path 1 
and path 2 generate two different curves in projective Hilbert space. The two curves 
start at the same point at t = 0 and later meet at some other point at t = T.  This 
can he seen explicitly from equations (29a) and (296) upon setting t = 0 and 1 = T 
and using equations (5) and ( S )  

i r , ( O )  = i r , ( O )  (42a)  
?rig-) = ir2(T).  ( 4 2 h )  

Tiken together the two curves form a closed curve in projective Hilbert space. We 
will now evaluate the measured relative phase using the transformed vectors. We can 
express &ft))  in terms of a vector denoted by !41(t)) 

&(i)) = etA"')l+l(t)). (43) 

Substituting equation (43) into equation (27a), contracting on the left with l&(t) l  
and integrating we find 

T T 
X , ( V  - ~ ~ ( 0 )  = i l  ~ ~ ( t ) ~ + ~ ( t ) ) d t  - 1 112~(t)1hl(t)1lj l(t))di. (44) 

Doing a similar analysis for I&(<)) we write 

1q2( t ) )  = ei"2(')l+?(t)). (45) 

We want to combine ! + , ( t ) )  and I&[ t : ) )  so that they form a closed curve in Hilbert 
space (analogous to I@(t))) .  In order to accomplish this, we choose I@,( t ) )  and 
1&(1)) so that they meet at their endpoints 

Substituting equation (45) into equation (27b) and performing the same steps that 
led to equation (44) we find 
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Setting t = 0 in equations (43) and (45) and using equation (33) and (&a) we find 

(48) 
e i h ( 0 )  = p I ( o ) ,  

Setting t = T in equations (43) and (45) and using equation (31) and (466) we find 

(49) 
,io - - e i ( A ~ ( T ) - A d T ) ) ,  

We subtract equation (47) from equation (44) and use equation (48) and (49) to find 
(mod 2 ~ )  

By introducing the coordinates 2 of projective Hilbert space, we can express the first 
two terms on the RHS of equation (SO) as line integrals of the connection form A 
(see equation (17)) 

where E, and E, are the two curves in projective Hilbert space represented by the 
operators irl(t) and % ? ( t ) .  The closed curve in projective Hilbert space is denoted 
by 

2 -t2 + c,. (52)  

By adding equations (5la) and (516) we find 
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We can express the second and third terms on the RHS of equation (55) as line 
integrals 

where we have used equations (43) and (45) and expressed all quantities in terms of 
the coordinates z of projective Hilbert space. We now add equations (56a) and (566) 
to obtain 

~ ~ ( ~ ) l d ~ ( ~ c ) u t ( ~ ) l ~ ( ~ ) )  = -i 9i l~(.)ldU(.)Ut(z)I~(.)). - LE, (57) 

Using equation (57) in equation (55)  we obtain the final expression for a under the 
transformation U ( t )  

Q = 1 A - i k  1~(2) ldU(~)Ut(2) l~( . ) )  

- lT l l l l ( t) lU(t)/~(t)Ut(t) l l l~(t)) d t .  (58) 

The transformed geometrical and dynamical phases are given by 

Recall the original expression equation (15) for a before the transformation U ( t )  

where the geometrical phase ,9 and the dynamical phase 6 are given by equations 
(18) and (19). By comparing equation (596) with equation (19) we see that the 
transformed dynamical phase is equal to the original dynamical phase 

- 
6 = 6. (61) 

This is a desirable result since the measured energy spectrum and hence the dynamical 
phase should be invariant under U (  t ) .  
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We have shown that the relative phase a and the dynamical phase 6 are invariant 
under U ( t ) ,  this obviously implies that the geometrical phase is also invariant 

@ = 8. (62) 

Substituting the expressions for 0 and 8 into equation (62) we see 

1 A  = A A -  i A ~ + ( ~ ) l d U ( ~ ~ U t ( ~ ) l + ( ~ ) ) .  (63) 

Equation (63) shows that even though the curve in projective Hilbert space has 
changed ( c  + S), the ii+ldUUtl+) term compensates for this change keeping the 
geometric phase invariant. We can interpret i l+ldUUtl+) as a connection form which 
is induced by the transformation to a ‘rotating’ frame of reference. We can justify 
this interpretation by considering the horizontal lift equation [9] 

k l ( t ) Ik l ( t ) )  = 0 (64) 

where ixl(t)) is the horizontal lift of the closed curve c in projective Hilbert space. 
Equation (64) chooses horizontal tangent vectors as being orthogonal to Ixl(t)), and 
represents the choice of a connection. Tie ixl(t)) are reiatea to j+,(i)) by 

t 

I x , ( t ) )  = e x p  [il I+)(~I). (65) 

The horizontal lift defines the geometric phase and by solving equation (64) we find 

Ixl(T)) = elalx1(0)) (66) 

where 0 is given by equation (1s). Under the transformation U ( 1 )  equation (64) 
goes into 

i21(t)lil(t)) - i s l ( ~ ) l ~ ( ~ ) U t ( ~ ) l x l ( l ) )  = 0 (67a) 

where 12,) is the horizontal lift of the curve E,. Recall that the curve i., is no longer 
closed. We must also consider the horizontal lift of the curve generated by the time 
evolution of path 2. The horizontal lift of i.? is denoted by I??) and satisfies the 
equation 

1 x 2  ( t I i ?( i )) - i % 2 (  t I 0 ( 1 U’( t I i ( t  )) = 0. (676) 

The Isl(t)) and Ij&(t)) are related to I & ( t ) )  and I&(t)) by 

(6%) . -  . . . 
is , j t~  = i&i t j ) .  

We see that equations (67a) and (676) are very similar to equations (27) and (28) 
upon contracting on the left with 1 &  and /&I. The difference between the two Sets 
of equations is the dynamical term U h U t  in equation (28a). The operator Cihli’ 
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is present only in the time evolution equation for path 1 just like the operator h in 
equation (1). This operator represents the apparatus and gives rise to the dynamical 
phase. Note that the i i i U t  term is common to both time evolution equations which 
allows it to be given a geometrical interpretation. 

By expressing IXl) and 12,) in terms of I&) and 14,), substituting these expres- 
sions into equations (67a) and (676) and performing the same analysis that led to 
equation (58) we find 

where f i  is given by equation (59a). Thus, under the transformation U ( t )  the 
horizontal lift equation which defines the geometric phase acquires an additional term 
(see equations (67a) and (676)). This term modifies the connection and appears in 
the expression for the geometric phase equation (59a). Since the transformation U ( t )  
also effects the curve in projective Hilbert space, the line integral of the transformed 
connection over the transformed cuwe gives the same result for the geometric phase 

A distinction between the energy and Hamiltonian operator has recently been 
made [4,5]. The energy operator was defined so that its eigenvalues are invariant 
UllUCl L 1 L L L L - u b p L L u b L 1 L  "'LLLa,y LIaIIaLuI IIIaL'wIILI. ,1110 Upc'aLVL 6 " I a  L l l l  L I I I " . , Y I I "  

energy spectrum and dynamical phase. The Hamiltonian transforms in a non-invariant 
way and should not in general be identified as the energy operator. The geometric 
(Berry) phase was generalized so that it was invariant under time-dependent unitary 
transformations by introducing a term A ,  = - iUUt .  These ideas are reflected in 
equations (59a) and (596) where we have shown that the geometric phase remains 
invariant due to the additional i d U U t  term and that the dynamical phase is given 
by the operator U h U t .  We have considered a time-dependent system for which the  
energy operator E ( t )  is initially equal to the Hamiltonian operator 

p = p. 

. ."Aar +;.-.a rla..n^Aa". ..":f,,". ..""e<,.*-"*:-"o TL:" A.,*" +lrn ma7.r..mA 

& ( t )  = h( t ) .  (70) 

Under the transformation U ( t )  the energy operator is no longer equal to the Hamil- 
tonian. The transformed energy operator P ( t )  is just the U h U i  term in equation 
P a )  

Z ( t )  = U ( t ) & ( t ) U ' ( t ) .  (71) 

The transformed dynamical phase is given by the transformed energy operator i ( t )  
(see eyuaiion (5%)).  We have shown ihai The ~oiiiiiicin exiia teiiii iii eqiiatiaiis (28a) 
and (2Sb) belongs to the horizontal lift equation (equations (67a) and (676)). This 
term gives rise to the connection form iL@IdUCJtl$) which is needed to keep the 
geometric phase invariant. 

For periodic transformations U ( T )  = U ( 0 )  [6], the curves E,  and E, are both 
closed. This can be seen from equations (29a) and (296) upon setting t = 0 and 
1 = T and using equations (4) and (7) 

ir,(T) = i r , ( O )  

ir,(T) = %,(O). 
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It is straightfonvard to show that the time evolution of path 2 represented by /&(t)) 
gives a trivial phase. Consider 

Using equations (31), (33) and (73) we can express the measured relative phase as 

\ & ( T I )  = ei%Jl(o)). (74) 

We no longer need to consider the second curve l&(t)), and can express 1&(t)) 
in terms of a curve Idl(t)) which is now closed (j+,(T)) = I&(O))). We can then 
derive equation (58) except that now the curve i. is given by i. = El .  

4. Summary 

The connection in the fibre bundle: Hilbert space - space of states changes under 
time-dependent unitary transformations 

A-A-ilq5ldUUtIq5). 

This is not a gauge transformation, the curvature two-form F = d A  also changes 

F - F  

which implies that the geometry of the fibre bundle changes. However, the calculated 
physical quantities are invariant: 
the relative phase 

a - a  

the dynamical phase 
- 

6 = 6  

and the geometric phase (holonomy) 

p = p .  
From a mathematical point of view the choice of a connection is in general arbitrary. 
It is the physical quantities which must be invariant. The connection is chosen to 
divide the total phase a into the physically observed geometrical and dynamical pans. 
A different choice for the connection must be made in order to calculate the obsetved 
geometrical phase under a time-dependent unitary transformation. 
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